BACHELOR OF ENGINEERING TECHNOLOGY IN METALLURGICAL ENGINEERING
Qualification code: BPML20 – NQF Level 7 (420 credits)
SAQA ID: 111393, CHE NUMBER: H/H16/E105 CAN
Campus where offered: Pretoria Campus

REMARKS

a. Admission requirement(s) and selection criteria:

• APPLICANTS WITH A SENIOR CERTIFICATE OBTAINED BEFORE 2008:

 Admission requirement(s):
 A Senior Certificate with a matriculation endorsement or an equivalent qualification, with a C symbol at Standard Grade or a D symbol at Higher Grade for English, and B symbols at Standard Grade or C symbols at Higher Grade for Mathematics and Physical Science.

 Selection criteria:
 To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 28.

 Recommended subject(s):
 None.

• APPLICANTS WITH A NATIONAL SENIOR CERTIFICATE OBTAINED IN OR AFTER 2008:

 Admission requirement(s):
 A National Senior Certificate or an equivalent qualification, with a bachelor's degree endorsement, or an equivalent qualification, with an achievement level of at least 4 for English (home language or first additional language) and 5 for Mathematics or Technical Mathematics, and 5 for Physical Sciences or Technical Sciences.

 Selection criteria:
 To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 28 (excluding Life Orientation).

 Recommended subjects:

• APPLICANTS WITH A NATIONAL CERTIFICATE (VOCATIONAL) AT NQF LEVEL 4:

 Admission requirement(s):
 A National Certificate (Vocational) at NQF Level 4, with a bachelor's degree endorsement, issued by the Council for Quality Assurance in General and Further Education and Training (Umalusi) with at least a 50% (APS of 4) for English, 50% for Life Orientation (excluded for APS calculation), and 60% (APS of 5) for Mathematics and Science, and 60% (APS of 5) for any other three compulsory vocational subjects.

 Selection criteria:
 To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 28 (excluding Life Orientation).

 Recommended subject(s):
 None.
• APPLICANTS WITH A NATIONAL N CERTIFICATE/NATIONAL SENIOR CERTIFICATE AS PUBLISHED IN REPORT 191: N3 (NQF LEVEL 4):

Admission requirement(s):
A National Senior Certificate or a National N Certificate with languages as published in Report 191: N3 (NQF Level 4) issued by both the Department of Higher Education and Training (DHET) and the Council for Quality Assurance in General and Further Education and Training (Umalusi), with at least 50% for English, Mathematics N3, Engineering Sciences N3 and any other two additional subjects.

Selection criteria:
To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 28.

Recommended subject(s):
None.

• APPLICANTS WITH A N6 CERTIFICATE IN A RELATED ENGINEERING FIELD AS PUBLISHED IN REPORT 191: N6:

Admission requirement(s):
A N6 Certificate in a related Engineering field as published in Report 191: N6 issued by both the Department of Higher Education and Training (DHET) and the Council for Quality Assurance in General and Further Education and Training (Umalusi), with an average of at least 60% for the qualification, and successful completion of an English Language Proficiency Assessment (done by the University).

Recommended subject(s):
None.

• APPLICANTS WITH QUALIFICATIONS ON THE HIGHER EDUCATION QUALIFICATION SUB-FRAMEWORK (HEQSF) OFFERED BY UNIVERSITIES OF TECHNOLOGY:

The applicant will be considered for admission to the programme, if any of the following qualifications has been completed:

- Higher Certificate in Metallurgical Engineering (NQF Level 5 - 140 credits): with an average of at least 60% for the qualification.
- Advanced Certificate in Metallurgical Engineering (NQF Level 6 - 140 credits): with an average of at least 60% for the qualification.
- Diploma in Metallurgical Engineering (NQF Level 6 - 280 credits): with an average of at least 55% for the qualification.
- National Diploma: Engineering: Metallurgy (NQF Level 6 - 3,000 credits): with an average of at least 55% for the qualification.

b. Assessment Procedure:
No further assessment will be done (except for candidates with a N4 Certificate). Applicants who achieve the minimum APS will be considered until the programme complement is full. All completed applications received within the published due dates will be ranked. After consideration of the Departmental Student Enrolment Plan, only the top ranking applicants will be selected. Once a programme is full, a waiting list will be in place to provide an opportunity for applicants to fill places of those who did not register on time. Applicants will be informed of their status per official letter from the Office of the Registrar, alternatively, they can check their application status on the TUT website, www.tut.ac.za.

c. Recognition of Prior Learning (RPL), equivalence and status:
See Chapter 30 of Students’ Rules and Regulations.

d. Intake for the qualification:
January only.
e. Minimum duration:
Three years.

f. Presentation:
Day classes. Working students with a National Diploma will be permitted to register for certain modules on a block-mode basis.

g. Re-registration:
A student may re-register for the module Project Metallurgy only with the permission of the Head of the Department. The purpose of the re-registration is to provide students with an opportunity to complete the project only, and not to redo it, should they fail the module.

h. Exclusion and readmission:
See Chapter 2 of Students’ Rules and Regulations.

Key to asterisks:
* Modules are offered in block mode. Full details on the offering is available from the department.

CURRICULUM

FIRST YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL105X</td>
<td>Computer Literacy</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>COS105X</td>
<td>Communication Skills</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>EGH105B</td>
<td>Engineering Graphics</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>EMA105B</td>
<td>Engineering Mathematics I</td>
<td>(5)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>INL125C</td>
<td>Information Literacy (block</td>
<td>(5)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFS125X</td>
<td>Life Skills (block module)</td>
<td>(5)</td>
<td>(2)</td>
<td></td>
</tr>
</tbody>
</table>

FIRST SEMESTER

<p>| | | | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE115B</td>
<td>Chemistry</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>GPS115B</td>
<td>General Physics</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>MMA115B</td>
<td>Metallurgical Materials</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCY115B</td>
<td>Metallurgical Chemistry</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>MTY115B</td>
<td>Metallurgical Thermodynamics</td>
<td>(5)</td>
<td>(14)</td>
<td>Chemistry</td>
</tr>
<tr>
<td>SOT115B</td>
<td>Strength of Materials</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS FOR THE FIRST YEAR: 140

SECOND YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIP206B</td>
<td>Mineral Processing*</td>
<td>(6)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>PHM206B</td>
<td>Physical Metallurgy</td>
<td>(6)</td>
<td>(28)</td>
<td>Metallurgical Materials</td>
</tr>
</tbody>
</table>

FIRST SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYM216B</td>
<td>Hydrometallurgy</td>
<td>(6)</td>
<td>(14)</td>
<td>Metallurgical Thermodynamics</td>
</tr>
<tr>
<td>RFN216B</td>
<td>Refractory Engineering</td>
<td>(6)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>
SCP216B Scientific Computing* (6) (14)

SECOND SEMESTER

PYM216B Pyrometallurgy (6) (14) Metallurgical Chemistry

TOTAL CREDITS FOR THE SECOND YEAR: 140

THIRD YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDM307B</td>
<td>Production Metallurgy*</td>
<td>(7)</td>
<td>(28)</td>
<td>Physical Metallurgy</td>
</tr>
<tr>
<td>PMD307B</td>
<td>Process Metallurgy and Design*</td>
<td>(7)</td>
<td>(28)</td>
<td>Hydrometallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pyrometallurgy</td>
</tr>
<tr>
<td>PML307B</td>
<td>Project Metallurgy*</td>
<td>(7)</td>
<td>(28)</td>
<td>Hydrometallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physical Metallurgy</td>
</tr>
<tr>
<td>PML317R</td>
<td>Project Metallurgy* (re-registration)</td>
<td>(7)</td>
<td>(0)</td>
<td>Pyrometallurgy</td>
</tr>
<tr>
<td></td>
<td>(first-semester module)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRST SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISM317B</td>
<td>Iron and Steel Making*</td>
<td>(7)</td>
<td>(14)</td>
<td>Hydrometallurgy</td>
</tr>
<tr>
<td>NFM317B</td>
<td>Non-Ferrous Metallurgy*</td>
<td>(7)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COR317B</td>
<td>Corrosion*</td>
<td>(7)</td>
<td>(14)</td>
<td>Chemistry</td>
</tr>
<tr>
<td>EPR317B</td>
<td>Engineering Practice*</td>
<td>(7)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS FOR THE THIRD YEAR: 140

TOTAL CREDITS FOR THE QUALIFICATION: 420

MODULE INFORMATION (OVERVIEW OF SYLLABUS)

The syllabus content is subject to change to accommodate industry changes. Please note that a more detailed syllabus is available at the Department or in the study guide that is applicable to a particular module. On 06 December 2019, the syllabus content was defined as follows:

CHEMISTRY (CHE115B) 1 X 3-HOUR PAPER
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Matter; Metallurgical reaction and stoichiometry; Periodic properties and elementals and metallurgical bonding; Metallurgical equilibria; Electrochemistry; and Introduction to organic chemistry. (Total tuition time: ± 140 hours)

COMMUNICATIONAL SKILLS (COS105X) 1 X 2-HOUR PAPER
(Module custodian: Department of Applied Languages)
To identify and apply basic competencies related to communicating in a technical or engineering environment. These competencies include presenting technical information to a variety of audiences, preparing technical reports, participating constructively in formal meetings and preparing a variety of business and technical documents. (Total tuition time: ± 40 hours)
COMPUTER LITERACY (COL105X) CONTINUOUS ASSESSMENT
(Module custodian: End User Computing Unit)
Students have to acquire foundational knowledge in Computing Fundamentals, essential digital skills in key applications based on Ms Office Suite (i.e. MS Word, MS Excel, MS PowerPoint, MS Visio Professional and MS Access) and network basics (i.e. MS Outlook and Internet). A complete syllabus and module outlines are described in the study guide. Students will do online exams that are mapped with SAQA and IC3 Essential Skills for Digital Literacy (International Certification). (Total tuition time: not available)

CORROSION (COR317B) 1 X 3-HOUR PAPER
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Fundamentals of Corrosion; Corrosion Electro Metallurgical; Corrosion Thermodynamics; Identification of different types of Corrosion, Failure and Prevention; Corrosion in water, atmospheric conditions and high temperature corrosion. (Total tuition time: ± 140 hours)

ENGINEERING GRAPHICS (EGH105B) CONTINUOUS ASSESSMENT
(Module custodian: Chemical, Metallurgical and Materials Engineering)

ENGINEERING MATHEMATICS I (EMA105B) 2 X 2-HOUR PAPER
(Module custodian: Department of Mathematics and Statistics)
Trigonometry, geometry, functions, complex numbers, vector algebra, matrices and transformations, single-variable differentiation and integration, partial differentiation, multiple-variable intervals, introduction to differential equations. (Total tuition time: not available)

ENGINEERING MATHEMATICS II (EMA206B) 1 X 3-HOUR PAPER
(Module custodian: Department of Mathematics and Statistics)
Mathematical modelling, first-order ordinary differential equations (ODEs), higher-order ODEs, Laplace transforms, systems of ODE's, numerical solutions of ODEs, Sturm-Liouville problems, partial differential equations. (Total tuition time: not available)

ENGINEERING PRACTICE (EPR317B) 1 X 3-HOUR PAPER
(Module custodian: Department of Electrical Engineering)
Engineering Communication; Project Management; Management and Ethics; Contracts and Intellectual Property; Entrepreneurship. (Total tuition time: ± 95 hours)

GENERAL PHYSICS (GPS115B) 1 X 3-HOUR PAPER
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)

HYDROMETALLURGY (HYM216B) 1 X 3-HOUR PAPER
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Introduction of information literacy. Development of a search strategy and application of a search string to search engines and academic databases. Evaluation of information sources. Ethical and legal use of information. (Total tuition time: ± 10 hours)
INFORMATION LITERACY (INL125C)
(Module custodian: Directorate of Library and Information Services)
Introduction of information literacy. Development of a search strategy and application of a search string to search engines and academic databases. Evaluation of information sources. Ethical and legal use of information. (Total tuition time: ± 10 hours)

IRON AND STEEL MAKING (ISM317B)
(Module custodian: Directorate of Chemical, Metallurgical and Material Engineering)
Blast Furnace Thermodynamics; Alternative Iron Making Processes; Steelmaking Processes; Gases in Iron and Steel; Ladle Metallurgy and continuous casting; Project Iron and Steelmaking. (Total tuition time: ± 140 hours)

LIFE SKILLS (LFS125X)
(Module custodian: Directorate of Student Development and Support)
Academic, personal and socio-emotional skills development for students in higher education. Personal and social dimensions address: Effective planning and self-management (goal setting and time management); Adjusting to university life (student life, diversity and change); Intra- and interpersonal skills development (conflict management, self-esteem, relationship management); Effective living (healthy living, HIV education, substance abuse). Academic dimension addresses: Academic skills for university (e.g. critical thinking, creativity, managing assignments and assessments). (Total tuition time: ± 20 hours)

METALLURGICAL CHEMISTRY (MCY115B)
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Introduction to Analytical Metallurgy; Introduction to Metallurgical Chemistry; Fundamentals of Metallurgical Chemistry; Introduction to Thermochemistry and Metallurgical Equilibria; Electrochemistry. (Total tuition time: ± 140 hours)

METALLURGICAL MATERIALS (MMA115B)
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Syllabus content not available. Please contact the Head of the Department.

MINERAL PROCESSING (MIP206B)
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Fundamentals of metallurgical principles, Fundamentals of Mineral Processing; Size Reduction; Classification; Concentration Techniques; Dewatering Techniques. (Total tuition time: ± 280 hours)

METALLURGICAL THERMODYNAMICS (MTY115B)
(Module custodian: Department of Chemical, Metallurgical and Materials Engineering)
Introduction to thermodynamics; The first law of thermodynamics; The second law of thermodynamics; Solutions and reactions involving gases with gibbs free energy composition in phase diagrams; Introduction to metallurgical kinetics. (Total tuition time: ± 140 hours)

NON-FERROUS METALLURGY (NFM317B)
(Module custodian: Department of Chemical, Metallurgical and Material Engineering)
Introduction to Hydrometallurgy; Separation, purification and enrichment processes of leach solution; Precipitation process for metal recovery from solution; Electrolytic processes from recovery and purification of metals. (Total tuition time: ± 140 hours)
Physical Metallurgy (PHM206B) 1 X 3-HOUR PAPER
Module custodian: Department of Chemical, Metallurgical and Material Engineering
Introduction to Project Metallurgy; Project Communication; Research Project Design; Materials Testing and Analysis; Technical report writing. (Total tuition time: ± 280 hours)

Probability and Statistics (PAS206B) 1 X 3-HOUR PAPER
Module custodian: Department of Mathematics and Statistics

Process Metallurgy and Design (PMD307B) CONTINUOUS ASSESSMENT
Module custodian: Department of Chemical, Metallurgical and Material Engineering
Design Development; General Design Consideration; Computer Aided Design; Design and Optimisation of a Mineral Processing Plant; Furnace Design; and Project. (Total tuition time: ± 280 hours)

Production Metallurgy (PDM307B) 1 X 3-HOUR PAPER
Module custodian: Department of Chemical, Metallurgical and Material Engineering
Bulk deformation processes; Foundry technology; Metal powder processing; Metal joining methods; Welding; Metal sheet welding processes; and Advanced manufacturing techniques. (Total tuition time: ± 280 hours)

Project Metallurgy (PML307B/PML317R) PROJECT ASSESSMENT
Module custodian: Department of Chemical, Metallurgical and Material Engineering
This module focuses on the various learning skills needed to understand the features, importance and procedure for conducting a research project. This module is an introduction to Project Metallurgy, Project Communication Research Project Design, Materials Testing and Analyses and Technical Report Writing. (Total tuition time: ± 280 hours)

Pyrometallurgy (PYM216B) 1 X 3-HOUR PAPER
Module custodian: Department of Chemical, Metallurgical and Material Engineering
Simple Stress and Strain; Torsion of Circular Shafts; Temperature Stresses; Catenaries; Beams-Shear Force and Bending Moment. (Total tuition time: ± 140 hours)

Refractory Engineering (RFN216B) 1 X 3-HOUR PAPER
Module custodian: Department of Chemical, Metallurgical and Material Engineering
Refractory Materials, compositions and Forms; Refractory Engineering and installation Technology; Refractory in Steelmaking Industry; Refractory in the Ferro-Alloy Industry; Refractory in the Non-Ferrous Industry; Refractory in the Foundry Industry; Refractory in other Industries. (Total tuition time: ± 140 hours)

Scientific Computing (SCP216B) 1 X 4-HOUR COMPUTER BASED
Module custodian: Department of Electrical Engineering
To provide students with an introduction, as well as cognitive and conceptual tools, for implementation in other modules in the qualification and in the workplace. The focus will be on modelling applications in engineering. (Total tuition time: ± 140 hours)

Strength of Materials (SOT115B) 1 X 3-HOUR PAPER
Module custodian: Department of Mechanical and Automation Engineering
To provide a thorough foundation to the behaviour of materials under the action of external forces as required at higher levels of study and for the purpose of economically designing machine components. (Total tuition time: ± 140 hours)