BACHELOR OF ENGINEERING TECHNOLOGY IN INDUSTRIAL ENGINEERING

Qualification code: BPIE19 - NQF Level 7 (420 credits)
SAQA ID: 101698, CHE NUMBER: H/H16/E027CAN

Campus where offered: Pretoria Campus

Please note that this electronic Prospectus differs from the printed booklet.

REMARKS

a. Admission requirement(s) and selection criteria:

• FOR APPLICANTS WHO OBTAINED A SENIOR CERTIFICATE BEFORE 2008:

 Admission requirement(s):
 A Senior Certificate or an equivalent qualification, with B symbols (70 – 79%) at Standard Grade or C symbols (60 – 69%) at Higher Grade for English, Mathematics and Physical Science.

 Selection criteria:
 To be considered for this qualification, applicants must have an Admission Points Score (APS) of at least 28.

 Recommended subject(s):
 None.

• FOR APPLICANTS WHO OBTAINED A NATIONAL SENIOR CERTIFICATE IN OR AFTER 2008:

 Admission requirement(s):
 A National Senior Certificate or an equivalent qualification, with a bachelor’s degree endorsement, or an equivalent qualification, with an achievement level of at least 5 for English (home language or first additional language) and Mathematics or Technical Mathematics, and Physical Sciences or Technical Sciences.

 Selection criteria:
 To be considered for this qualification, Applicants must have an Admission Points Score (APS) of at least 28.

 Recommended subjects:
 Engineering Graphics and Design and Mechanical Technology.

• FOR APPLICANTS WHO OBTAINED A QUALIFICATION FROM TECHNICAL AND VOCATIONAL EDUCATION AND TRAINING (TVET) COLLEGES (PREVIOUSLY KNOWN AS FET COLLEGES):

 Applicants with a National Certificate (Vocational) at NQF Level 4:

 Admission requirement(s):
 A National Certificate (Vocational) at NQF Level 4, with a bachelor’s degree endorsement, issued by the Council for Quality Assurance in General and Further Education and Training (Umalusi) with at least a 60% (APS of 5) for English and Mathematics, and at least 70% (APS of 6) for Physical Sciences or Applied Engineering Technology and any three other vocational subjects.

 Selection criteria:
 To be considered for this qualification, Applicants must have an Admission Points Score (APS) of at least 34.
Recommended subject(s):
None.

Applicants with a National N Certificate as published in Nated 191: N3 (NQF Level 4):

Admission requirement(s):
A National Senior Certificate and a National N Certificate as published in Nated 191: N3 (NQF Level 4), issued by both the Department of Higher Education (DHET) and the Council for Quality Assurance in General and Further Education and Training (Umalusi) with at least 60% (APS of 5) for English and at least 70% (APS of 6) for Mathematics N3 and Engineering Sciences N3.

Applicants will be exempted from NQF Level 5 modules on the grounds of N4/N5/N6 subjects passed (a minimum of 50% of the qualification’s first-year modules). Exemption will be granted from equivalent engineering subjects (including Mathematics and Engineering Sciences) passed with at least 70% (APS of 6).

Recommended subject(s):
None.

Applicants with a N Diploma as published in Nated 191: N4/N5/N6 (NQF Level 5):

Admission requirement(s):
A National Senior Certificate and a National N Diploma (Nated 191: N4/N5/N6) at NQF Level 5, issued by both the Department of Higher Education (DHET) and the Council for Quality Assurance in General and Further Education and Training (Umalusi) with at least 60% (APS of 5) for English and at least 70% (APS of 6) for Mathematics N4, N5 and N6 and Engineering Sciences N4.

Applicants will be exempted from NQF Level 5 modules on the grounds of N4/N5/N6 subjects passed (a minimum of 50% of the qualification’s first-year modules). Exemption will be granted from equivalent engineering subjects (including Mathematics and Engineering Sciences) passed with at least 70% (APS of 6).

Recommended subject(s):
None.

• FOR APPLICANTS WITH QUALIFICATIONS ON THE HIGHER EDUCATION QUALIFICATION SUB-FRAMEWORK (HEQSF) OFFERED BY UNIVERSITIES OF TECHNOLOGY:

The applicant will be considered for admission to the programme, if any of the following qualifications has been completed:

- Higher Certificate in Industrial Engineering (NQF Level 5 - 140 credits): at least 60% for all modules completed.
- Advanced Certificate in Industrial Engineering (NQF Level 6 - 140 credits): at least 60% for all modules completed.
- Diploma in Industrial Engineering Technology (NQF Level 6 - 280 credits): at least 55% for all modules completed.
- National Diploma: Engineering: Industrial (NQF Level 6 - 3,000 credits): at least 55% for all subjects completed.

Admission will be based on academic performance; availability of space; and an interview.

b. Assessment procedure (not applicable to applicants with qualifications on the HEQSF):
All applications received by the published due dates will be ranked according to the APS achieved. After consideration of the departmental Student Enrolment Plan (SEP), only the top performing applicants will be selected. A waiting list consisting of the remainder of the applicants will provide an opportunity for applicants to fill places created by accepted students failing to meet enrolment dates. Applicants will be informed per official letter from the Office of the Registrar.
c. Minimum duration:
 Three years.

d. Presentation:
 Day classes.

e. Intake for the qualification:
 January only.

f. Exclusion and readmission:
 See Chapter 2 of Students’ Rules and Regulations.

g. Recognition of Prior Learning (RPL), equivalence and status:
 See Chapter 30 of Students’ Rules and Regulations.

h. Module credits:
 Module credits are shown in brackets after each module.

CURRICULUM

FIRST YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL105X</td>
<td>Computer Literacy</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>COS105X</td>
<td>Communication Skills</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>EGC105B</td>
<td>Engineering Graphics</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>EMA105B</td>
<td>Engineering Mathematics I</td>
<td>(5)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>INL125C</td>
<td>Information Literacy (block module)</td>
<td>(5)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>IWS105B</td>
<td>Industrial Work Systems</td>
<td>(5)</td>
<td>(42)</td>
<td></td>
</tr>
<tr>
<td>LFS125X</td>
<td>Life Skills (block module)</td>
<td>(5)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>MEC105B</td>
<td>Mechanics</td>
<td>(5)</td>
<td>(28)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS FOR THE FIRST YEAR: 126

SECOND YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA206B</td>
<td>Production and Automation</td>
<td>(6)</td>
<td>(42)</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>PRE206B</td>
<td>Production Engineering</td>
<td>(6)</td>
<td>(28)</td>
<td>Engineering Mathematics I</td>
</tr>
</tbody>
</table>

FIRST SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPR216B</td>
<td>Operational Research</td>
<td>(6)</td>
<td>(14)</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>POE215B</td>
<td>Project Engineering</td>
<td>(5)</td>
<td>(14)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID216B</td>
<td>Simulation Design</td>
<td>(6)</td>
<td>(14)</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engineering Mathematics II</td>
</tr>
</tbody>
</table>

TOTAL CREDITS FOR THE SECOND YEAR: 154
THIRD YEAR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
<th>PREREQUISITE MODULE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBM307B</td>
<td>Engineering Business Management</td>
<td>(7)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>IDP307B</td>
<td>Industrial Design Projects</td>
<td>(7)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>QMS307B</td>
<td>Quality Engineering and Management Systems</td>
<td>(7)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>SYE307B</td>
<td>System Engineering</td>
<td>(7)</td>
<td>(28)</td>
<td></td>
</tr>
</tbody>
</table>

FIRST SEMESTER

EPI317B Engineering Practice (7) (14)

SECOND SEMESTER

One of the following modules:

ADM317B Advanced Manufacturing (7) (14)
SCS317B Supply Chain Systems (7) (14)

TOTAL CREDITS FOR THE THIRD YEAR: 140

TOTAL CREDITS FOR THE QUALIFICATION: 420

MODULE INFORMATION (OVERVIEW OF SYLLABUS)

The syllabus content is subject to change to accommodate industry changes. Please note that a more detailed syllabus is available at the Department or in the study guide that is applicable to a particular module. On 8 August 2018, the syllabus content was defined as follows:

A
ADVANCED MANUFACTURING (ADM317B) 1 X 3-HOUR PAPER
(Module custodian: Department of Industrial Engineering)
General manufacturing knowledge, as well as cognitive and conceptual tools, other modules in the qualification and in the workplace. The relationship between the scientific theory and real life emphasized. (Total tuition time: ± 140 hours)

C
COMMUNICATION SKILLS (COS105X) 1 X 2-HOUR PAPER
(Module custodian: Department of Applied Languages)
To identify and apply basic competencies related to communicating in a technical or engineering environment. These competencies include presenting technical information to a variety of audiences, preparing technical reports, participating constructively in formal meetings and preparing a variety of business and technical documents. (Total tuition time: ± 40 hours)

COMPUTER LITERACY (COL105X) CONTINUOUS ASSESSMENT
(Module custodian: End User Computing Unit)
Students have to acquire foundational knowledge in Computing Fundamentals, essential digital skills in key applications based on Ms Office Suite (i.e. MS Word, MS Excel, MS PowerPoint, MS Visio Professional and MS Access) and network basics (i.e. MS Outlook and Internet). A complete syllabus and module outlines are described in the study guide. Students will do online exams that are mapped with SAQA and IC3 Essential Skills for Digital Literacy (International Certification). (Total tuition time: not available)
ENGINEERING BUSINESS MANAGEMENT (EBM307B)
(Module custodian: Department of Industrial Engineering)
1 X 3-HOUR PAPER
Cost accounting and financial management in engineering projects, strategies for allocation of cost as well as the tools to assist in decision making to optimise business success through making good choices. Analyse and interpret engineering financial reports. Human aspects in project management are addressed and dealing with teams and the approaches to managing change. Software utilised in the industry for financial analysis is considered. (Total tuition time: ± 140 hours)

ENGINEERING GRAPHICS (EGC105B)
(Module custodian: Department of Civil Engineering)
CONTINUOUS ASSESSMENT
Drawing apparatus, drawing basics, construction geometry, orthographic projection, sections, isometric projection, CAD fundamentals and application of CAD to building drawings. (Total tuition time: ± 140 hours)

ENGINEERING MATHEMATICS I (EMA105B)
(Module custodian: Department of Mathematics and Statistics)
2 X 2-HOUR PAPERS
Trigonometry, geometry, functions, complex numbers, vector algebra, matrices and transformations, single-variable differentiation and integration, partial differentiation, multiple-variable intervals, introduction to differential equations. (Total tuition time: not available)

ENGINEERING MATHEMATICS II (EMA206B)
(Module custodian: Department of Mathematics and Statistics)
1 X 3-HOUR PAPER
Mathematical modelling, first-order ordinary differential equations (ODEs), higher-order ODEs, Laplace transforms, systems of ODE’s, numerical solutions of ODEs, Sturm-Liouville problems, partial differential equations. (Total tuition time: not available)

ENGINEERING PRACTICE (EPI317B)
(Module custodian: Department of Industrial Engineering)
1 X 3-HOUR PAPER
Effective plan and execute projects. Write quality technical reports and communicate project information. Managerial as well as human resource functions, ethical behaviour in the workplace. Contract law as well as entrepreneurship will be presented during the module enabling the student to identify and assess new business opportunities within an ethical and legal context. (Total tuition time: ± 140 hours)

INDUSTRIAL DESIGN PROJECTS (IDP307B)
(Module custodian: Department of Industrial Engineering)
PROJECT ASSESSMENT
Integration of theoretical concepts gained in various disciplines into a project that will solve a problem, guide on how to apply industrial engineering inputs in any design project and also encourage development of team spirit necessary to be attained in preparation for the world of work. (Total tuition time: ± 280 hours)

INDUSTRIAL WORK SYSTEMS (IWS105B)
(Module custodian: Department of Industrial Engineering)
2 X 3-HOUR PAPERS

INFORMATION LITERACY (INL125C)
(Module custodian: Directorate of Library and Information Services)
CONTINUOUS ASSESSMENT
Introduction of information literacy. Development of a search strategy and application of a search string to search engines and academic databases. Evaluation of information sources. Ethical and legal use of information. (Total tuition time: ± 10 hours)
LIFE SKILLS (LFS125X) CONTINUOUS ASSESSMENT

(Module custodian: Directorate of Student Development and Support)
Academic, personal and socio-emotional skills development for students in higher education. Personal and social dimensions address: Effective planning and self-management (goal setting and time management); Adjusting to university life (student life, diversity and change); Intra- and interpersonal skills development (conflict management, self-esteem, relationship management); Effective living (healthy living, HIV education, substance abuse). Academic dimension addresses: Academic skills for university (e.g. critical thinking, creativity, managing assignments and assessments). (Total tuition time: ± 20 hours)

MECHANICS (MEC105B) 1 X 3-HOUR PAPER
(Module custodian: Department of Mechanical Engineering, Mechatronics and Industrial Design)
To equip the student with a fundamental understanding of mechanics and how to apply these to a design problem. (Total tuition time: not available)

OPERATIONAL RESEARCH (OPR216B) 1 X 3-HOUR PAPER
(Module custodian: Department of Industrial Engineering)

PROBABILITY AND STATISTICS (PAS206B) 1 X 3-HOUR PAPER
(Module custodian: Department of Mathematics and Statistics)

PRODUCTION AND AUTOMATION (PAA206B) 2 X 3-HOUR PAPERS
(Module custodian: Department of Industrial Engineering)
Manufacturing processes, design and development of products. Theory, laboratory work and practical. Manufacturing and the technologies associated with the design and analysis of products processes. Automation and associated technologies. (Total tuition time: ± 420 hours)

PRODUCTION ENGINEERING (PRE206B) 1 X 3-HOUR PAPER
(Module custodian: Department of Industrial Engineering)
Identifying and investigating factors that hamper productivity in the organisation; Selecting the appropriate methodologies that will solve operational problems; Proposing solutions to operational dysfunctions by applying the prescribed methodologies; Identifying and investigating factors that hamper productivity in the organisation; proposing solutions to operational dysfunctions by applying the prescribed method study techniques; Selecting the appropriate direct work measurement technique(s) to measure the work content of a given task; Whilst taking into consideration the work environment, The human factor and the impact of technology on the particular business environment. (Total tuition time: ± 280 hours)

PROJECT ENGINEERING (POE215B) 1 X 3-HOUR PAPERS
(Module custodian: Department of Industrial Engineering)
Need for and advantages of project management. Definition of the project. Modern project planning methods. Communication and presentation of information. Feasibility studies (affordability). Project implementation. Support of the operational systems. Case studies, projects and computer applications. (Total tuition time: ± 140 hours)
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Format</th>
<th>Tuition Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMS307B</td>
<td>QUALITY ENGINEERING AND MANAGEMENT SYSTEMS</td>
<td>1 x 3-hour paper</td>
<td>± 280 hours</td>
</tr>
<tr>
<td>SCP216B</td>
<td>SCIENTIFIC COMPUTING</td>
<td>1 x 4-hour computer-based</td>
<td>± 140 hours</td>
</tr>
<tr>
<td>SID216B</td>
<td>SIMULATION DESIGN</td>
<td>1 x 4-hour paper</td>
<td>± 140 hours</td>
</tr>
<tr>
<td>SCS317B</td>
<td>SUPPLY CHAIN SYSTEMS</td>
<td>1 x 3-hour paper</td>
<td>± 140 hours</td>
</tr>
<tr>
<td>SYE307B</td>
<td>SYSTEM ENGINEERING</td>
<td>1 x 3-hour paper</td>
<td>± 280 hours</td>
</tr>
</tbody>
</table>

QUALITY ENGINEERING AND MANAGEMENT SYSTEMS (QMS307B)

Module custodian: Department of Industrial Engineering

Analyse different management systems and processes to ensure effective operations. Enhance understanding of quality and management systems in industry. Knowledge regarding management and management systems to solve broadly defined engineering problems in the industrial engineering environment. Problem solving will be developed. (Total tuition time: ± 280 hours)

SCIENTIFIC COMPUTING (SCP216B)

Module custodian: Department of Mechanical Engineering, Mechatronics and Industrial Design

To provide students with an introduction, as well as cognitive and conceptual tools, for implementation in other modules in the qualification and in the workplace. The focus will be on modelling applications in engineering. (Total tuition time: ± 140 hours)

SIMULATION DESIGN (SID216B)

Module custodian: Department of Industrial Engineering

Modes of simulation and its application in solving real-life engineering problems. Knowledge of Simulation Design is essential for component development in engineering disciplines. Introduce simulation software, operations scheduling and other modules to become competent in simulation designs. The relationship between simulation design and real-life models will be emphasised in all units. (Total tuition time: ± 140 hours)

SUPPLY CHAIN SYSTEMS (SCS317B)

Module custodian: Department of Industrial Engineering

Provide general supply chain knowledge, as well as the fundamental ways in which a supply chain can be designed, implemented, and managed. (Total tuition time: ± 140 hours)

SYSTEM ENGINEERING (SYE307B)

Module custodian: Department of Industrial Engineering

Systems thinking, concepts, methodologies, models, and tools needed to understand, tailor, and apply systems engineering to most types of human-made systems. Interdisciplinary application of scientific and engineering effort, role as systems thinkers and process engineers. The nature of systems engineering being life-cycle orientated ensures the study of systems engineering encompasses economic, environmental, and social implications of bringing systems into being, whether it be products, services, operations, temporary or permanent projects. (Total tuition time: ± 280 hours)