HIGHER CERTIFICATE IN INDUSTRIAL ENGINEERING
Qualification code: HCIE18 - NQF Level 5 (140 credits)
SAQA ID: 99013, CHE NUMBER: H/H16/E030CAN

Campus where offered: Pretoria Campus

REMARKS

a. Admission requirement(s) and selection criteria:

• FOR APPLICANTS WHO OBTAINED A SENIOR CERTIFICATE BEFORE 2008:

Admission requirement(s):
A Senior Certificate or an equivalent qualification, with C symbols at Standard Grade or D symbols at Higher Grade for English and Mathematics, and a D symbol at Standard Grade or an E symbol at Higher Grade for Physical Science.

Selection criteria:
To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 20.

Recommended subject(s):
None.

• FOR APPLICANTS WHO OBTAINED A NATIONAL SENIOR CERTIFICATE IN OR AFTER 2008:

Admission requirement(s):
A National Senior Certificate or an equivalent qualification, with a higher certificate endorsement, or an equivalent qualification, with an achievement level of at least 4 for English (home language or first additional language) and Mathematics or Technical Mathematics and at least 3 for Physical Sciences or Technical Sciences.

Applicants who do not meet the requirements for Mathematics, Physical Sciences, or any of the two additional subjects may enroll for these subjects at any Technical and Vocational Education and Training (TVET) College (see National N Certificate requirements), and if these are successfully passed at a performance level of at least 50%, they may re-apply for admission to the University.

Selection criteria:
To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 20.

Recommended subject(s):
Engineering Graphics and Design and Mechanical Technology.

• FOR APPLICANTS WHO OBTAINED A QUALIFICATION FROM TECHNICAL AND VOCATIONAL EDUCATION AND TRAINING (TVET) COLLEGES (PREVIOUSLY KNOWN AS FET COLLEGES):

Applicants with a National Certificate (Vocational) at NQF Level 4:

Admission requirement(s):
A National Certificate (Vocational) at NQF Level 4 issued by the Council for Quality Assurance in General and Further Education and Training (Umalusi), with at least a 50% (APS of 4) for English, Mathematics and 40% (APS of 3) for Physical Sciences.
Selection criteria:
To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 20.

Recommended subject(s):
None.

Applicants with a National N Certificate as published in Nated 191: N3 (NQF Level 4):

Admission requirement(s):
A National Senior Certificate and a National N Certificate as published in Nated 191: N3 (NQF Level 4) issued by both the Department of Higher Education (DHET) and the Council for Quality Assurance in General and Further Education and Training (Umalusi), with at least a 50% for English and any additional language, Mathematics N3, Engineering Sciences N3 and any two additional N3 subjects.

Selection criteria:
To be considered for this qualification, applicants must have an Admission Point Score (APS) of at least 20.

Recommended subject(s):
None.

b. Assessment procedure:
All applications received by the published due dates will be ranked according to the APS achieved. After consideration of the Departmental Student Enrolment Plan (SEP), only the top performing applicants will be selected. A waiting list consisting of the remainder of the applicants will provide an opportunity for applicants to fill places created by accepted students failing to meet the enrolment dates. Applicants will be informed per official letter from the Office of the Registrar.

c. Minimum duration:
One year.

d. Presentation:
Day classes. Classes and assessments may take place on Friday afternoons and/or Saturdays.

e. Intake for the qualification:
January only.

f. Exclusion and readmission:
See Chapter 2 of Students’ Rules and Regulations.

g. Recognition of Prior Learning (RPL), equivalence and status:
See Chapter 30 of Students’ Rules and Regulations.

h. Module credits:
Module credits are shown in brackets after each module.

CURRICULUM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODULE</th>
<th>NQF-L</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM105X</td>
<td>Communication Skills</td>
<td>(5)</td>
<td>(8)</td>
</tr>
<tr>
<td>CPL105X</td>
<td>Computer Literacy</td>
<td>(5)</td>
<td>(10)</td>
</tr>
<tr>
<td>EPH105C</td>
<td>Engineering Physics</td>
<td>(5)</td>
<td>(14)</td>
</tr>
<tr>
<td>INL125C</td>
<td>Information Literacy (block module)</td>
<td>(5)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
LFS125X Life Skills (block module) (5) (2)
TMA105C Technical Mathematics (5) (21)

FIRST SEMESTER

EGR115C Engineering Graphics (5) (14)
IEP115C Industrial Engineering Practice (5) (28)

SECOND SEMESTER

EWP115C Engineering Work Systems for Process Planning (5) (14)
QSP115C Quality Systems and Process Improvements (5) (14)
STT115C Statistics (5) (14)

TOTAL CREDITS FOR THE QUALIFICATION: 140

SUBJECT/MODULE INFORMATION (OVERVIEW OF SYLLABUS)

The syllabus content is subject to change to accommodate industry changes. Please note that a more detailed syllabus is available at the Department or in the study guide that is applicable to a particular subject. On 13 October 2017, the syllabus content was defined as follows:

C

COMMUNICATION SKILLS (COM105X) 1 X 2-HOUR PAPER
(Module custodian: Department of Applied Languages)
To identify and apply basic competencies related to communicating in a technical or engineering environment. These competencies include presenting technical information to a variety of audiences, preparing technical reports, participating constructively in formal meetings and preparing a variety of business and technical documents. (Total tuition time: ± 40 hours)

COMPUTER LITERACY (CPL105X) CONTINUOUS ASSESSMENT
(Module custodian: End User Computing Unit)
Students have to acquire foundational knowledge in Computing Fundamentals, essential digital skills in key applications based on Ms Office Suite (i.e. MS Word, MS Excel, MS PowerPoint, MS Visio Professional and MS Access) and network basics (i.e. MS Outlook and Internet). A complete syllabus and module outlines are described in the study guide. Students will do online exams that are mapped with SAQA and IC3 Essential Skills for Digital Literacy (International Certification). (Total tuition time: not available)

E

ENGINEERING GRAPHICS (EGR115C) CONTINUOUS ASSESSMENT
(Module custodian: Department of Mechanical Engineering, Mechatronics and Industrial Design)

ENGINEERING PHYSICS (EPH105C) 1 X 3-HOUR PAPER
(Module custodian: Department of Physics)
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINEERING WORK SYSTEMS FOR PROCESS PLANNING (EWP115C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Module custodian: Department of Industrial Engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various planning methodologies, which are relevant to different processes and/or volume requirements are considered. Further work-study techniques relevant to planning are presented. A buildup on the knowledge accumulated in the module Facility Planning methodologies. The module orientates the student with the software utilised in the industry used for planning like SAP, Cispro. This module builds the knowledge of the student in production philosophies like Just in Time and Theory of Constraints. (Total tuition time: ± 140 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUSTRIAL ENGINEERING PRACTICE (IEP115C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Module custodian: Department of Industrial Engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide an understanding and hands on experience that will introduce the candidate to skills as an Industrial Engineer Technician Assistant. Teaching focuses on the integration of the engineering work systems for process planning, the process improvement and the engineering science in the daily work of an Industrial Engineer Technician Assistant. (Total tuition time: ± 280 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION LITERACY (INL125C)</td>
<td></td>
<td>CONTINUOUS ASSESSMENT</td>
</tr>
<tr>
<td>(Module custodian: Directorate of Library and Information Services)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction of information literacy. Development of a search strategy and application of a search string to search engines and academic databases. Evaluation of information sources. Ethical and legal use of information. (Total tuition time: ± 10 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE SKILLS (LFS125X)</td>
<td></td>
<td>CONTINUOUS ASSESSMENT</td>
</tr>
<tr>
<td>(Module custodian: Directorate of Student Development and Support)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic, personal and socioemotional skills development for students in higher education. Effective planning and self-management skills (Formulating a life vision (goal setting); Time management; Classroom skills (concentration, note taking and effective listening). Adjusting to university life (student life, diversity and change) Intra- and interpersonal skills development (conflict management, self-esteem). Academic skills for University (critical thinking, creativity, managing assignments and assessments. Effective living (managing diversity and change, healthy living, substance abuse). (Total tuition time: not available)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUALITY SYSTEMS AND PROCESS IMPROVEMENTS (QSP115C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Module custodian: Department of Industrial Engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of quality techniques and methods in different manufacturing and service processes. Contribute towards the continual quality improvement in manufacturing and services processes. Develop the student in self-study and problem solving methods. Personal and professional ethics are addressed during the course of learning. (Total tuition time: ± 140 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATISTICS (STT115C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Module custodian: Department of Industrial Engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using statistics to solve engineering problems. Tools to develop mathematical models for non-deterministic systems are studied. Cognitive and conceptual tools, for implementation in other modules will also be developed. The focus will be on modelling applications in engineering. (Total tuition time: not available)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNICAL MATHEMATICS (TMA105C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Module custodian: Department of Mathematics and Statistics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrices, engineering calculations, functions for engineers, trigonometry, geometry, vectors, Introduction to differentiation and integration, applications of differentiation and integration, data handling. (Total tuition time: not available)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>